跳转至

莫队二次离线

例题 1

Luogu P5047 [Ynoi2019 模拟赛] Yuno loves sqrt technology II

给你一个长为 的序列 次询问,每次查询一个区间的逆序对数。

数据范围:

查询区间逆序对数,在使用莫队的同时维护一颗权值线段树或权值树状数组,可以在 的时间复杂度内解决该问题。当然,取块长 更优。

可是这样的复杂度仍然无法达到毒瘤出题人的要求,我们需要在此算法上进一步优化。

考虑该题与其它使用莫队的题的差异性,由于需要在维护值域的数据结构上查询,故单次端点的移动是 而非

众所周知,莫队是一种离线算法,它通过将询问离线处理的方式来优化复杂度。我们在将原问题的查询离线的基础上,尝试将端点移动时在数据结构上进行的修改和查询操作离线下来统一处理,最后用 的时间复杂度解决问题。由于前后进行了两次离线操作,故称为「莫队二次离线」。

例题 2

Luogu P5501 [LnOI2019] 来者不拒,去者不追

给定一个长度为 的序列 。给定 个询问,每次询问一个区间中 中所有数的「Abbi 值」之和。

Abbi 值定义为:若 在询问区间 中是第 小,那么它的「Abbi 值」等于

数据范围:

示例代码
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#include <algorithm>
#include <iostream>
#include <vector>

typedef long long lxl;

const int maxN = 5e5;
const int maxM = 5e5;
const int maxA = 1e5;
const int sqrN = 708;
const int sqrA = 317;

int n, m;
int a[maxN + 10];
int b[maxN + 10];
int l, r;
lxl f[maxN + 10];
lxl g[maxN + 10];
lxl ans[maxM + 10];

typedef struct SegmentTree {
  struct Node {
    lxl val;
    lxl tag;
  } node[4 * maxA + 10];

  void MakeTag(int u, int l, int r, lxl val) {
    node[u].val += val * (r - l + 1);
    node[u].tag += val;
    return;
  }

  void PushDown(int u, int l, int r) {
    if (!node[u].tag) return;
    int mid = (l + r) / 2;
    MakeTag(2 * u, l, mid, node[u].tag);
    MakeTag(2 * u + 1, mid + 1, r, node[u].tag);
    node[u].tag = 0;
    return;
  }

  void PushUp(int u) {
    node[u].val = node[2 * u].val + node[2 * u + 1].val;
    return;
  }

  void Add(int u, int l, int r, int s, int t, lxl val) {
    if (s > t) return;
    if (s <= l && r <= t) {
      MakeTag(u, l, r, val);
      return;
    }
    PushDown(u, l, r);
    int mid = (l + r) / 2;
    if (s <= mid) Add(2 * u, l, mid, s, t, val);
    if (t >= mid + 1) Add(2 * u + 1, mid + 1, r, s, t, val);
    PushUp(u);
    return;
  }

  void Add(int u, int l, int r, int pos, lxl val) {
    Add(u, l, r, pos, pos, val);
    return;
  }

  lxl Ask(int u, int l, int r, int s, int t) {
    if (s > t) return 0;
    if (s <= l && r <= t) {
      return node[u].val;
    }
    PushDown(u, l, r);
    int mid = (l + r) / 2;
    if (t <= mid) return Ask(2 * u, l, mid, s, t);
    if (s >= mid + 1) return Ask(2 * u + 1, mid + 1, r, s, t);
    return Ask(2 * u, l, mid, s, t) + Ask(2 * u + 1, mid + 1, r, s, t);
  }
} sgt;

typedef struct BlockArray {
  struct Block {
    int l, r;
    lxl tag;
  } block[sqrA + 10];

  struct Array {
    int bel;
    lxl val;
  } array[maxA + 10];

  void Build() {
    for (int i = 1; i <= maxA; i++) array[i].bel = (i - 1) / sqrA + 1;
    for (int i = 1; i <= maxA; i++) block[array[i].bel].r = i;
    for (int i = maxA; i >= 1; i--) block[array[i].bel].l = i;
    return;
  }

  void Add(int pos, lxl val) {
    for (int i = array[pos].bel + 1; i <= array[maxA].bel; i++)
      block[i].tag += val;
    for (int i = pos; i <= block[array[pos].bel].r; i++) array[i].val += val;
    return;
  }

  lxl Ask(int pos) { return array[pos].val + block[array[pos].bel].tag; }

  lxl Ask(int l, int r) {
    if (l > r) return 0;
    return Ask(r) - Ask(l - 1);
  }
} dba;

namespace captainMoSecondaryOffline {
namespace offline2 {
struct Query {
  int i;
  int l, r;
  int k;
};

std::vector<Query> query[maxN + 10];

dba sum, cnt;

void solve() {
  sum.Build();
  cnt.Build();
  for (int i = 1; i <= n; i++) {
    sum.Add(a[i], a[i]);
    cnt.Add(a[i], 1);
    for (int j = 0; j < query[i].size(); j++) {
      for (int k = query[i][j].l; k <= query[i][j].r; k++) {
        ans[query[i][j].i] +=
            1ll * query[i][j].k *
            (sum.Ask(a[k] + 1, maxA) + cnt.Ask(1, a[k] - 1) * a[k]);
      }
    }
  }
  return;
}
}  // namespace offline2

namespace offline1 {
struct Query {
  int i;
  int l, r;

  bool operator<(const Query &other) const {
    if (b[l] != b[other.l]) return l < other.l;
    return r < other.r;
  }
};

std::vector<Query> query;

sgt sum, cnt;

void solve() {
  std::sort(query.begin(), query.end());
  for (int i = 1; i <= n; i++) {
    f[i] = sum.Ask(1, 1, maxA, a[i] + 1, maxA);
    g[i] = cnt.Ask(1, 1, maxA, 1, a[i] - 1);
    sum.Add(1, 1, maxA, a[i], a[i]);
    cnt.Add(1, 1, maxA, a[i], 1);
  }
  for (int i = 0, l = 1, r = 0; i < query.size(); i++) {
    if (l > query[i].l) {
      offline2::query[r].push_back(
          (offline2::Query){query[i].i, query[i].l, l - 1, 1});
      while (l > query[i].l) {
        l--;
        ans[query[i].i] -= f[l] + (g[l] - 1) * a[l];
      }
    }
    if (r < query[i].r) {
      offline2::query[l - 1].push_back(
          (offline2::Query){query[i].i, r + 1, query[i].r, -1});
      while (r < query[i].r) {
        r++;
        ans[query[i].i] += f[r] + (g[r] + 1) * a[r];
      }
    }
    if (l < query[i].l) {
      offline2::query[r].push_back(
          (offline2::Query){query[i].i, l, query[i].l - 1, -1});
      while (l < query[i].l) {
        ans[query[i].i] += f[l] + (g[l] - 1) * a[l];
        l++;
      }
    }
    if (r > query[i].r) {
      offline2::query[l - 1].push_back(
          (offline2::Query){query[i].i, query[i].r + 1, r, 1});
      while (r > query[i].r) {
        ans[query[i].i] -= f[r] + (g[r] + 1) * a[r];
        r--;
      }
    }
  }
  return;
}
}  // namespace offline1

void solve() {
  offline1::solve();
  offline2::solve();
  for (int i = 0; i < m; i++)
    ans[offline1::query[i].i] += ans[offline1::query[i - 1].i];
  return;
}
}  // namespace captainMoSecondaryOffline

int main() {
  std::cin >> n >> m;
  for (int i = 1; i <= n; i++) std::cin >> a[i];
  for (int i = 1; i <= n; i++) b[i] = (i - 1) / sqrN + 1;
  for (int i = 1; i <= m; i++)
    std::cin >> l >> r,
        captainMoSecondaryOffline::offline1::query.push_back(
            (captainMoSecondaryOffline::offline1::Query){i, l, r});
  captainMoSecondaryOffline::solve();
  for (int i = 1; i <= m; i++) std::cout << ans[i] << '\n';
  return 0;
}