1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155 | #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 500010;
const int INF = 0x3f3f3f3f;
int Begin[maxn], Next[maxn], To[maxn], e, n, m;
int sz[maxn], son[maxn], top[maxn], fa[maxn], dis[maxn], p[maxn], id[maxn],
End[maxn];
// p[i]表示i树剖后的编号,id[p[i]] = i
int cnt, tot, a[maxn], f[maxn][2];
struct matrix {
int g[2][2];
matrix() { memset(g, 0, sizeof(g)); }
matrix operator*(const matrix &b) const // 重载矩阵乘
{
matrix c;
for (int i = 0; i <= 1; i++)
for (int j = 0; j <= 1; j++)
for (int k = 0; k <= 1; k++)
c.g[i][j] = max(c.g[i][j], g[i][k] + b.g[k][j]);
return c;
}
} Tree[maxn], g[maxn]; // Tree[]是建出来的线段树,g[]是维护的每个点的矩阵
void PushUp(int root) { Tree[root] = Tree[root << 1] * Tree[root << 1 | 1]; }
void Build(int root, int l, int r) {
if (l == r) {
Tree[root] = g[id[l]];
return;
}
int Mid = l + r >> 1;
Build(root << 1, l, Mid);
Build(root << 1 | 1, Mid + 1, r);
PushUp(root);
}
matrix Query(int root, int l, int r, int L, int R) {
if (L <= l && r <= R) return Tree[root];
int Mid = l + r >> 1;
if (R <= Mid) return Query(root << 1, l, Mid, L, R);
if (Mid < L) return Query(root << 1 | 1, Mid + 1, r, L, R);
return Query(root << 1, l, Mid, L, R) *
Query(root << 1 | 1, Mid + 1, r, L, R);
// 注意查询操作的书写
}
void Modify(int root, int l, int r, int pos) {
if (l == r) {
Tree[root] = g[id[l]];
return;
}
int Mid = l + r >> 1;
if (pos <= Mid)
Modify(root << 1, l, Mid, pos);
else
Modify(root << 1 | 1, Mid + 1, r, pos);
PushUp(root);
}
void Update(int x, int val) {
g[x].g[1][0] += val - a[x];
a[x] = val;
// 首先修改x的g矩阵
while (x) {
matrix last = Query(1, 1, n, p[top[x]], End[top[x]]);
// 查询top[x]的原本g矩阵
Modify(1, 1, n,
p[x]); // 进行修改(x点的g矩阵已经进行修改但线段树上的未进行修改)
matrix now = Query(1, 1, n, p[top[x]], End[top[x]]);
// 查询top[x]的新g矩阵
x = fa[top[x]];
g[x].g[0][0] +=
max(now.g[0][0], now.g[1][0]) - max(last.g[0][0], last.g[1][0]);
g[x].g[0][1] = g[x].g[0][0];
g[x].g[1][0] += now.g[0][0] - last.g[0][0];
// 根据变化量修改fa[top[x]]的g矩阵
}
}
void add(int u, int v) {
To[++e] = v;
Next[e] = Begin[u];
Begin[u] = e;
}
void DFS1(int u) {
sz[u] = 1;
int Max = 0;
f[u][1] = a[u];
for (int i = Begin[u]; i; i = Next[i]) {
int v = To[i];
if (v == fa[u]) continue;
dis[v] = dis[u] + 1;
fa[v] = u;
DFS1(v);
sz[u] += sz[v];
if (sz[v] > Max) {
Max = sz[v];
son[u] = v;
}
f[u][1] += f[v][0];
f[u][0] += max(f[v][0], f[v][1]);
// DFS1过程中同时求出f[i][0/1]
}
}
void DFS2(int u, int t) {
top[u] = t;
p[u] = ++cnt;
id[cnt] = u;
End[t] = cnt;
g[u].g[1][0] = a[u];
g[u].g[1][1] = -INF;
if (!son[u]) return;
DFS2(son[u], t);
for (int i = Begin[u]; i; i = Next[i]) {
int v = To[i];
if (v == fa[u] || v == son[u]) continue;
DFS2(v, v);
g[u].g[0][0] += max(f[v][0], f[v][1]);
g[u].g[1][0] += f[v][0];
// g矩阵根据f[i][0/1]求出
}
g[u].g[0][1] = g[u].g[0][0];
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n - 1; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}
dis[1] = 1;
DFS1(1);
DFS2(1, 1);
Build(1, 1, n);
for (int i = 1; i <= m; i++) {
int x, val;
scanf("%d%d", &x, &val);
Update(x, val);
matrix ans = Query(1, 1, n, 1, End[1]); // 查询1所在重链的矩阵乘
printf("%d\n", max(ans.g[0][0], ans.g[1][0]));
}
return 0;
}
|